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The first chemical synthesis of MeO-3-GlcUAB(1—3)GIcNAc-UDP to elucidate the catalytic mechanism of
hyaluronic acid synthases (HASs) is described. Construction of the desired p(1—3)-linked disaccharide 10
was achieved very efficiently by coupling MeO-3-GlcUA donor 3 with the suitable protected GlcNTroc
acceptor 4 using BF3-Et,0 as Lewis acid. Chemoselective removal of anomeric NAP, phosphorylation,
hydrogenation, coupling with UMP-morpholidate, and finally complete deprotection gave the target
compound 1 in good yield.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Hyaluronic acid (HA), a vital extracellular matrix component of
vertebrate tissues, has been implicated in numerous physiological
and biological phenomena.! HA is a linear biopolymer composed of
thousands of alternating repeating disaccharide units of glucuronic
acid [GIcUAB(1—3)] and N-acetylglucosamine [GIcNAcP(1—4)].2
The enzymes that catalyze the polymerization of HA, the hyaluro-
nan synthases (HASs), are unique glycosyltransferases that have
both selective GIcNAcB(1—4) transferase and GIcUAB(1—3) trans-
ferase activities. There is an ambiguity regarding the directionality
of chain elongation of HA biosynthesis, that is, whether the addi-
tion of monosaccharide units occurs at the reducing or non-reduc-
ing terminus of growing polysaccharide chains. Although, many
groups have investigated this problem extensively, till date there
is no accurate knowledge regarding the mechanism of HA biosyn-
thesis and hence only minimal information is available on the
molecular basis for HASs catalytic action. Consequently, our under-
standing of the detailed mechanisms whereby hyaluronan influ-
ences cell behavior is still incomplete.

It was identified recently that the small HA fragments behave as
potent activators of immunocompetent cells which play a decisive
role in the development of T cell-mediated immune responses.*
Also, studies such as NMR spectroscopic investigations and the
mechanism of degradation, performed to understand the chemical
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properties of HA, are preferably executed using low-molecular-
weight HA fragments rather than polymeric HA.®> Thus, syntheses
of well-defined HA fragments is required to provide adequate
material for carrying out such investigations. Consequently, several
strategies have been reported for the construction of HA fragments
containing either a GIcUA or a GIcNAc at the reducing end.®
Moreover, it was observed that the deoxy analogs obtained by the
substitution of one of the —OH groups of basic enzyme acceptor with
-F, -OMe, -N3, -NHj,, etc. sometimes result in highly specific accep-
tors or inhibitors for the individual enzymes.” For example, Scott and
Viola found that 3-fluoro and 4-fluoro analogs of p-glucose were
higher affinity substrates than p-glucose for aldolase reductase but
2-fluoro and 4-fluoro analogs of p-glucitol were inactive acceptors
for sorbitol dehydrogenase.”® It was noticed by us that the activities
of only Gal 3-O-sulfotransferases and not sialyltransferases (Sia-T)
were adversely affected by Galp(1—4)GIcNAcB(1—6)[F-3-Galp-
(1-3)]GalNAca-OBn. Amazingly, F-4-Galp(1—4)GIcNAcB(1-6)-
[Galp(1—3)]GalNAca-OBn was found to be an inhibitor of
02,6(N)Sia-T activity but not of o2,3(N)Sia-T activity.”® The deoxy
analogs of disaccharide-peracetylated GlcNAcB1-3Galp-O-naph-
thalenemethanol containing -H, -F, -N3, -NH,, or -OCH3 at C-3’
and C-4' positions of the terminal N-acetylglucosamine residue pre-
sumably inhibit one or more galactosyltransferases in vivo, thereby
blocking sLe* formation and experimental tumor cell metastasis.”
Thus, functionalization of hydroxyl group of an HA fragment struc-
ture by substituting with -F, -OMe, -N3, -NH,, etc. may result in
highly specific acceptors or inhibitors for the individual HAS. In this
context, we have reported very recently the first chemical synthesis
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of F-4-GIcUAB(1—3)GIcNAc-UDP for investigating the catalytic
mechanism of HASs.® In general, OMe derivatives have similar po-
tency and their synthesis requires cheap and less hazardous re-
agents than their respective fluoro derivatives. Therefore, we
became interested in developing a facile synthesis of these OMe
derivatives and report herein the first chemical synthesis of MeO-
3-GIcUAB(1—-3)GIcNAc-UDP (1) which may have the potential to
be a specific donor for the HASs.

2. Results and discussion

It was envisaged that MeO-3-GlcUAB(1—3)GIcNAc-1-phos-
phate derivative 2 would be an ideal intermediate to generate tar-
get molecule 1 (Fig. 1). The phosphate derivative 2 could in turn be
obtained by the glycosylation of known GIcNTroc acceptor 4% by
MeO-3-GIcUA imidate donor 3. To avoid the possible formation
of side product due to transacetylation during O-glycosylation,
benzoyl group was preferred over acetyl group for protection of
the 2-OH position of GIcUA in donor 3.° We preferred to utilize
2-naphthylmethyl (NAP) as an anomeric-protecting group in 3
and 4, because of its ease in removal by DDQ oxidation.'® Due to
the straightforward transformation of N-Troc into N-Ac, Troc group
was chosen as a temporary protecting group for nitrogen in the
glycosyl acceptor 4.!!

Scheme 1 outlines the synthesis of donor 3. Synthesis of imidate
3 was initiated with known GIcUA donor 5.!2 Induction of anomer-
ic NAP protection in 5 was executed by the glycosylation of NAP-
OH with donor 5 in the presence of TMSOTf at 0 °C to afford 6 in
80% yield. Deacetylation of 6 with NaOMe-MeOH followed by
saponification of the methyl ester using LiOH gave 7 in good yield.
2,4-di-0O-acylated derivative 8 was prepared from 7 following a 3-
step procedure. Lactonization of 7 with benzoic anhydride in DMF,
followed by complete benzoylation using DMAP-pyridine, and fi-
nally methanolysis of the lactone ring in the presence of anhydrous
NaOAc afforded the desired 2,4-di-O-acylated derivative 8 in 76%
yield for three steps.!> O-Methylation of the 3-hydroxyl group of
8 with CH;sl and freshly prepared Ag,0 provided 9 in 92% yield. Re-
moval of anomeric NAP protection of 9 was carried out using
DDQ'? followed by imidation'* to afford the MeO-3-GIcUA donor
3 in high yield (Scheme 1).
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Figure 1. Retrosynthesis of target molecule MeO-3-GIcUAB(1—3)GIcNAc-UDP (1).
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Scheme 1. Preparation of donor 3. Reagents and conditions: (a) NAPOH, TMSOT,
CH,Cl,, 4 AMS, 0°C, 2 h, 80%; (b) (i) NaOMe, MeOH, rt, 6 h, 90%; (ii) LiOH, THF, H,0,
0°C, 4 h, 95%; (c) (i) Bz,0, DMF, 85 °C., 4 h, 86%; (ii) Bz,0, Py, DMAP, DMF, rt, 40 h,
96%; (iii) NaOAc, MeOH, DMF, rt, 10 h, 92%; (d) Mel, Ag,0, CH,Cl,, 4 A molecular
sieves, rt, 20 h, 92%; (e) (i) DDQ, CH,Cl,-MeOH (4:1), rt, 12 h, 89%; (ii) CCIsCN, DBU,
CH,Cl,, 0°C, 2 h, 78%.

We next investigated multistep synthesis of the crucial phos-
phate intermediate 2 (Scheme 2). Coupling of the MeO-3-GlcUA
donor 3 and the known acceptor 4% was carried out with BFs-Et,0
in the presence of 4 A molecular sieves in toluene to afford the de-
sired disaccharide 10 with complete p1—3 stereoselectivity in 83%
yield.5®812215 Detrimental effect on the yield of the above-men-
tioned glycosylation reaction was observed upon substitution of
dichloromethane as a solvent. Also, TMSOTf was found ineffective
for the same glycosylation as a promoter in comparison with
BF3-Et,0. It is worth mentioning that the glycosylation reaction re-
ported here is one among the few procedures available for efficient
synthesis of B1—3 linkage with high B-stereoselectivity and high
yield#1%d Most of the literature available on the synthesis of
B1-3 linkage suffers from certain drawbacks such as poor B-selec-
tivity and low yield.5ekn12015b¢ Egllowing above glycosylation
reaction, MeO-3-GIcUAB1—3-linked disaccharide 10 could be ac-
cessed with complete B1—3 stereoselectivity and in high yield.
Next, replacement of the N-Troc group in 10 by an N-acetyl group
was effected with Zn-Ac,0 and the subsequent acetylation of the
free amine offered 11 in 88% yield.!' Chemoselective removal of
NAP in 11 with DDQ in CH,Cl,-MeOH (4:1)'° provided anomeric-
free hydroxyl disaccharide 12 in 89% yield. Phosphorylation of 12
with tetrabenzyl pyrophosphate!® gave the benzyl-protected ano-
meric phosphate 2 as the desired o anomer in high yield. Promi-
nent signals in the 'H NMR spectrum of 2 at §=5.68 (dd,
J12=3.4Hz, J;p=6.4Hz, 1 H, H-1 of GIcNAc), and the signal in
the P NMR of 2 at =—1.90 (s, 1P) were observed, confirming
the o linkage between the disaccharide and phosphoric acid moie-
ties. Deprotection of the benzyl group in 2 by hydrogenation over
palladium catalyst gave 13 in 90% yield Scheme 2. Coupling of 13
with UMP-morpholidate in the presence of 1H-tetrazole in DMF-
pyridine (3:1)'® followed by deprotection of the benzoyl groups
and the methyl ester using 3 M NaOH afforded the target com-
pound 1'7 in 45% yield over two steps after isolation and purifica-
tion by reverse-phase column HPLC and gel-filtration column
HPLC.

3. Conclusions

In summary, we have successfully accomplished the first chem-
ical synthesis of MeO-3-GIcUAB(1—3)GIcNAc-UDP following a
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Scheme 2. Synthesis of MeO-3-GlcUAB(1—3)GIcNAc-UDP 1. Reagents and conditions: (a) BFs-Et,0, toluene, 4 A MS, 0 °C, 2 h, 83%; (b) Zn, Ac,0, AcOH, THF, rt, 4 h, 88%; (c)
DDQ, CH,Cl,-MeOH (4:1), rt, 12 h, 89%; (d) LHMDS, [(BnO),P],0, THF, —78 to 0 °C, 3 h, 81%; (e) H,, Pd/C, EtOAc-MeOH (1:1), Et3N, rt, 9 h, 90%; (f) (i) UMP-morpholidate, 1H-
tetrazole, DMF-py (3:1), rt, 2 d; (ii) 3 M NaOH, MeOH, rt, 10 h; (iii) RP column HPLC; gel-filtration column HPLC, 45% from 13.

very efficient glycosylation reaction which proceeded with com-
plete stereoselectivity and high yield. We speculate that this com-
pound would serve as a novel substrate to investigate the catalytic
mechanism of HASs.
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